

Development of PBMC derived tumor effector cells with potent pan-cancer cytolytic activity for autologous cellular immunotherapy

Frank Borriello, MD, PhD*¹, Joshua Keegan, BS¹, and James Lederer, PhD^{1,2} ¹Alloplex Biotherapeutics, Inc., Woburn, MA, ²Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA *Corresponding Author, fborriello@alloplexbio.com

Background

A unique autologous cellular therapeutic (SUPLEXA) has been developed from Figure 1: SUPLEXA Cell Manufacturing. ENLIST immunomodulatory cells are human PBMC. It is comprised of NK cells, $\gamma\delta$ T cells and CD8+ T effector cells, mixed with PBMCs and cultured for 5 days to activate PBMCs. Activated cells are capable of broadly lysing a variety of tumor cell lines in vitro. SUPLEXA cells are then expanded for 9 days in IL-7 and IL-15. Photomicrographs of 5-day activated manufactured using an efficient 2 weeks xeno-free manufacturing procedure PBMCs are shown along with a table listing broad tumor cell killing activity. employing two proprietary engineered leukocyte stimulator cell lines (ENLIST) that SUPLEXA Cells Dev **ENLIST Cell Induction of SUPLEXA from PBMCs** express an array of immunomodulatory proteins. The SUPLEXA cell manufacturing process is highly reproducible and demonstrates low inter-subject variability in cellular nmodified Cell Lines Used in Secondary Effector Assay composition. SUPLEXA cells are distinguished from many other cellular approaches 5-Davs $\bullet)$ Ielanoma Cell Lines in that they are derived from autologous PBMC that have only been stimulated with • SK-MEL-2 • M14 • SK-MEL-28 ENLIST cells through naturally occurring receptors without any genetic modification. on-Melanoma Cell Lines 5-Days Here, we report on the *in vitro* characterization of SUPLEXA cytolytic activity on COLO205 - colorecta HOP62 - lung a variety of target tumor cell lines. • IGR-OV1 - ovarian Day 0 (PBMC and ENLIST Cells)

The SUPLEXA cells manufacturing process uses peripheral blood mononuclear cells (PBMCs) from cancer patients. PBMCs are then stimulated with ENLIST cells for a 5day induction period, which is then followed by a 9-day cytokine-induced expansion period. SUPLEXA cells are then cryopreserved to use as an autologous adoptive immunotherapy. A first-in-human clinical trial for this novel adoptive cellular therapeutic for cancer is projected to begin later this year.

ENLIST cells: Engineered SK-MEL2 melanoma cell lines that expresses curated sets of > 20 different immunomodulatory proteins that are engineered for membrane expression.

SUPLEXA: PBMCs from normal healthy volunteers were co-incubated with freeze/thaw dead ENLIST cells for 5 days followed by expansion in culture medium containing cytokine support. After 9 days, SUPLEXA cells were harvested and cryopreserved.

Mass Cytometry (CyTOF): SUPLEXA cells were comprehensively characterized by mass cytometry (CyTOF) using a 48-marker antibody panel. CyTOF data analysis was done using OMIQ for dimensional reduction by opt-SNE and cell subset phenotyping.

Tumor Cell Killing Assay: Tumor cytolytic activity was measured by flow cytometry using fluorescent tumor cell targets at 2:1, 1:1, and 1:2 effector:target cell ratios. M14 melanoma cells that express red fluorescent protein (RFP) were used as tumor cell targets for these studies.

Cytokines: A 33 cytokine Luminex panel was used to assess cytokine levels in tumor cell cytolysis supernatants.

Results

Figure 2: Tumor Cell Cytolysis Assay and Killing Activity. SUPLEXA cells were compared for tumor cell cytolytic activity against fluorescent tumor target cells using a flow cytometry method. Figures show representative killing of M14-RFP target cells as measured by flow cytometry and tumor cytolysis activity against different tumor cell lines (M14, K562, PC3, COLO205).

Comparison of SUPLEXA Tumor Cell Line Killing Activity

Figure 3: Cytokine Production by SUPLEXA During Tumor Cytolysis. SUPLEXA cells were incubated without or with M14, K562, PC3, or COLO205 cells for 48 hours. Supernatants were tested for cytokines by 33-plex Luminex. Plots of tumor-induced cytokine production by SUPLEXA are shown.

elop l	Bro	ac	1 1	ſumo	or Ce	ll Kill	ing	A	tiv	vity	/

PBMC coincubated with Unmodified SK-MEL-2 (% killing)	PBMC coincubated with ENLIST Cells [®] (% killing)
0%	>95%
0%	>95%
0%	>95%
0%	>95%
0%	>95%
0%	>95%
0%	>95%
0%	>95%
0%	>95%
0%	>95%
0%	>95%

 M14-Melanoma - PC3-Prostate 🛨 K562-Leukemia

Figure 4: SUPLEXA Cell Phenotyping By CyTOF – Antibody Panel and Data Analysis Workflow. SUPLEXA cells were analyzed to compare single-cell phenotypes using a customized 48-marker CyTOF antibody panel to identify NK cell and T cell subsets as well as transcription factors, adhesion markers, and functional molecules. CyTOF antibody panels, CyTOF data analysis workflow, and a cell subset overlay plot is shown here.

	CyTOF Anti	ibody F	Panel for SUPLEXA Characterization		
Marker	Antibody Clone	Metal	Role		
CD45	HI30	89Y	Pan-leukocyte marker		
CD172ab	SE5A5	111Cd	Myeoloid cell marker		
CD8a	RPA-T8	112Cd	CD8 T cell alpha-chain		
CD20	2H7	113In	B cell marker		
CD4	RPA-T4	114Cd	CD4 T cell marker		
CD3	UCHT1	115In	All T cell marker		
DNAM1	DX11	116Cd	Adhesion molecule for NK cell activation		
Granulysin*	Polyclonal	141Pr	Effector cell tumor killing		
KIR2DS1	1127B	142Nd	NK receptor that interacts with DAP12		
PD-1	EH12.2H7	143Nd	Activation and checkpoint inhibition		
DAP12	406288	144Nd	Signaling adaptor of NK cell activation		
CD19	HIB19	145Nd	B cell marker		
CD14	M5E2	146Nd	monocyte and macrophage		
CD86	IT2.2	147Sm	costimulation		
Granzyme A	CB9	148Nd	Effector cell tumor killing		
Granzyme K	GM26E7	149Sm	Effector cell tumor killing		
CD26	BA5b	150Nd	Dipeptidyl peptidase/adensosine deaminase		
TCR-Vd1	REA173	151Eu	gamma delta T cell receptor		
CTLA-4	L3D10	152Sm	Checkpoint inhibition		
CD69	FN50	153Eu	Lympocyte activation marker		
TCRgd	REA591	154Sm	gamma delta T cell identification		
EOMES	WD1928	155Gd	Transcription factor for effector lymphocyte function		
CD8b	SIDI8BEE	156Gd	CD8 T cell beta-chain		
CD16	3G8	157Gd	NK marker		
CD39	A1	158Gd	ATP to Adenosine enzyme		
PLZF	R17-809	159Tb	Transcription factor, regulates NK cells		
NKp30	P30-15	160Gd	NK cell marker		
PSGL1	CHO131	161Dy	Adhesion molecule for tissue infiltration		
CD56	NCAM16.2	162Dy	Pan-NK cell marker		
4-1BB	REA765	163Dy	T cell costimulation		
GITR	110416	164Dy	Glucocorticoid-induced recetptor - Tregs		
NKG2A	131411	, 165Ho	Effector NK cell marker - negative		
CD107a	H4A3	166Er	Degranulation marker		
Grz B	GB11	167Er	Effector cell tumor killing		
NKp46	REA808	168Er	Activating receptor on NK cells		
TCRVa7.2	REA179	169Tm	Invariant NK T cells		
PD-L1	29E.2A3	170Er	PD-1 ligand for checkpoint inhibition		
TCR-Vd2	123R3	171Yb	gamma delta T cell receptor		
NKG2D	149810	172Yb	Effector NK cell marker - positive		
TCRab	T10B9.1A-31	173Yb	alpha-beta T cell receptor		
Ki67	8D5	174Yb	Recently proliferated cell marker		
Tbet	4B10	175Lu	Transcription factor for NK and effector lymphocyte subets		
Perforin	dG9	176Yb	Effector cell tumor killing		
CD57	REA769	194Pt	T cell exhaustion marker		
HLA-DR	L243	195Pt	Hiscompatability		
			Trigger cytolytic activity of NK and NKT cells		
SLAMF6	292811	19661			
	292811 HIT2	196Pt 198Pt	NK adhesion to endothelium, cADP ribose hydrolase		

Figure 5: SUPLEXA Cell Phenotyping By CyTOF. CyTOF data from SUPLEXA were analyzed to compare functional phenotypes by marker expression profiles. **Cell Identification Marker Expression**

Conclusions

- 1. The manufacture of SUPLEXA cells from PBMCs generates immune effector 2. Comprehensive phenotyping of SUPLEXA cells by CyTOF indicates that high-levels of killer cell factors (granzymes and perforin).
- 3. SUPLEXA cells represent a novel autologous cellular therapeutic for cancer.

Results

cells with potent tumor cytolysis activity against multiple tumor cell line targets. SUPLEXA cells are a mixture of NK cells, CD8+ T cells, CD56+ NK-like T cells, and $\gamma\delta$ T cells that express activation phenotypes (NKG2D, CD26) and